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J. Phys. A: Math. Gen. 16 (1983) 3755-3772. Printed in Great Britain 

Tangent bundle geometry for Lagrangian dynamics 

M Crampin 
Faculty of Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 

Received 11 March 1983 

Abstract. Various aspects of the differential geometry of the tangent bundle of a differenti- 
able manifold are examined, and the results applied to time-independent Lagrangian 
dynamics. It is shown that a certain type (1, 1) tensor field which is part of the intrinsic 
geometry of a tangent bundle, being a tensorial equivalent of the projection map of tangent 
vectors, plays a role in Lagrangian theory scarcely less important than that of the canonical 
one-form on a cotangent bundle in Hamiltonian theory. Recent results in Lagrangian 
theory are interpreted from this new viewpoint. 

1. Introduction 

The Hamiltonian picture of dynamics appears to be, in many ways, mathematically 
more straightforward and more elegant than the Lagrangian picture. This is because 
the cotangent bundle of the configuration space manifold of a mechanical system, 
which is the phase space of the system, carries a natural geometrical structure which 
is central to Hamiltonian theory, namely the canonical one-form 8 = padq", whose 
exterior derivative is the symplectic two-form on which the theory is based. Though 
Lagrangian theory, in the time-independent case, is also based on a symplectic 
structure, this time on the tangent bundle of configuration space, it is not a pre-existing 
structure but must be constructed out of the Lagrangian function. This makes for 
complexity. But recent research has uncovered some extremely interesting conse- 
quences of this complexity, such as the possibility of the existence of inequivalent 
alternative Lagrangian formulations of the same dynamical system, even in such a 
familiar case as a spherically symmetric potential in three dimensions (Henneaux and 
Shepley 1982); the generation of constants of the motion not derived from Noether- 
type theorems in these circumstances (Hojman and Harleston 1981); and the use of 
dynamical symmetries to create alternative Lagrangian functions (Prince 1983, Sarlet 
1983). Much work has also been done recently on the inverse problem of Lagrangian 
dynamics. The complexity of this problem is convincingly demonstrated by Douglas's 
analysis of the two-dimensional case (Douglas 1941); of the many recent publications 
on this subject I shall single out for mention Henneaux's geometrical analysis (Hen- 
neaux 1982), Sarlet's detailed re-examination of the Helmholtz conditions (Sarlet 
1982), and a paper of my own (Crampin 1981), since these references are particularly 
relevant to the present paper. 

It has, however, been overlooked so far that the tangent bundle of a differential 
manifold does have naturally defined on it a simple geometrical object, which is loosely 
speaking dual to the canonical one-form of the cotangent bundle, and which plays a 
very interesting and important, if somewhat more subtle and hidden, role in the 
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development of Lagrangian theory. This geometrical object is a type (1, 1) tensor 
field, which incorporates the projection map T* : T(q ,u ) (T(M))  + T, ( M )  of tangent 
vectors into the intrinsic differential geometry of T ( M ) .  (Here M is a differentiable 
manifold, T : T ( M ) + M  its tangent bundle, (4, U )  a point of T ( M )  with n(q,  U )  =q.) 
It is dual to the canonical one-form in the sense that that object may be thought of 
as incorporating into the intrinsic differential geometry of the cotangent bundle T*(M)  
the pull-back map T *  : T,* ( M )  + TG,,, (T* (M))  of covectors. I shall show that this 
tensor field plays a key role in the analysis of the inverse problem of Lagrangian 
dynamics by use of horizontal distributions (Crampin 1981: it does actually make a 
brief appearance in that paper), and in the derivation of sequences of algebraic 
conditions (Henneaux 1982 and especially Sarlet 1982); it gives useful insights into 
the geometrical structure of the Euler-Lagrange equations and such classical notions 
as that of a variation; it is implicated in the derivation of the Hojman-Harleston 
result; and it provides for a geometrical formulation of the conditions found by Prince 
for a dynamical symmetry to generate an alternative Lagrangian. 

I shall devote 9: 2 of the paper to demonstrating properties of the tensor field, 
having first reviewed various constructions of importance in tangent bundle geometry 
which are required for the definition. The following sections then develop Lagrangian 
theory in terms of the concepts of 9: 2; the arguments given in the main body of the 
paper are coordinate free, so various coordinate formulae are collected in Q 7. 

2. Geometry of the tangent bundle 

The following constructions and results of tangent bundle geometry will be required. 
The standard reference is Yano and Ishihara (1973). 

An element U of T(q,u) (T(M))  satisfies T * V  = 0 (where T : T ( M )  +A4 is the projec- 
tion) if and only if it is tangent to the fibre T-'(q). Such a vector is said to be vertical; 
the dim(M)- dimensional subspace of T(,+)( T ( M ) )  consisting of vertical vectors is 
called the vertical subspace and a vector field V on T ( M )  is said to be vertical if 
V(4,ul is vertical at each point (4, U). Any element 6 of T,(M) determines a vertical 
vector at any point (4, U )  in the fibre over 4, called its vertical lift to (4, U), denoted 
by it is the tangent vector at r = 0 to the curve r -u +r6. The map 6 ~ [ ; b , ~ ,  is 
an isomorphism of T,(M) with the vertical subspace of T(q ,u l (T(M)) ,  which essentially 
duplicates the canonical isomorphism of a finite-dimensional real vector space with 
its tangent space at any point. The vertical lift X' of a vector field X on M is the 
vertical vector field on T ( M )  defined by X ~ , , , ,  =(X,)Tq,u,. It may be thought of as 
being constant along the fibres. 

An important example of a vertical vector field which is not constant along the 
fibres of T ( M )  is the dilation field A, which is the generator of the one-parameter 
group of dilations S,:(q, u)-(q,e'u). A vector field W on T ( M )  which satisfies 
S,,W = (e')'W, where p is an integer not less than -1, is homogeneous of degree p 
in the fibre coordinates, and satisfies LAW =pW =[A, W ] .  A vertical lift is 
homogeneous of degree -1, and any vector field W such that [A, W ]  = - W must be 
the vertical lift of a vector field on M. 

The Lie bracket of any two vertical vector fields is again vertical, and that of two 
vertical lifts is zero. 

Any smooth map q5 of M to itself lifts to a smooth map of T ( M )  to itself by 
(4, u)w(q5(q), q5*,(u)). If (4,) is a one-parameter group of transformations of M, with 
the vector field X as its generator, then the lifted transformations of T ( M )  also form 
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a one-parameter group, whose generator is a vector field on T ( M )  called the complete 
lift of X and denoted by X'. This construction applies, with the necessary 
modifications, to a vector field on M which generates only a flow which is not a 
one-parameter group. (On the few subsequent occasions in this paper on which I 
have to consider flows and one-parameter groups, I shall ignore the complications 
caused by the fact that not all vector fields are complete, that is, generate one-parameter 
groups. I trust that the reader can make the appropriate adjustments required to 
cope with incomplete vector fields.) Lie brackets involving complete lifts satisfy the 
following rules: 

[X', Y ' ] = [ X ,  Y]' 

[A, X']  = 0;  

[X', Y ' ] = [ X ,  Y]' .  

A complete lift is homogeneous of degree 0 in the fibre coordinates and so 

and in fact any vector field which commutes with A and is projectable (that is, .rr-related 
to a vector field on M )  is a complete lift. 

It is important to realise that, unlike the vertical lift, the complete lift does not 
have a pointwise equivalent: the complete lifts of two vector fields may differ at a 
point (4, U )  E T ( M )  even though the vector fields themselves agree at q E M .  

If {XI, X z ,  . . , , X m }  is a local basis of vector fields on M, where m = dim(M), then 
{ X i ,  XS, . . . , X & , X T , X ; ,  . . . , X k }  is a local basis of vector fields on T ( M ) .  It is 
therefore sufficient, in  order to determine uniquely a tensor field on T ( M ) ,  to specify 
its action on the complete and vertical lifts of vector fields on M. 

Any curve (T in M has a natural lift to T ( M ) ,  namely the curve t - (u( t ) ,  b(t)), 
where b(t) is the tangent vector to (T at v(t). A vector field on T ( M )  whose integral 
curves are all natural lifts of curves on M in this sense is called a second-order 
differential equation field. This terminology is justified by the fact that the projections 
of its integral curves onto M, when expressed in terms of coordinates, are the solutions 
of a system of second-order ordinary differential equations (see S; 7 for the details). 
A vector field r on T ( M )  is a second-order differential equation field if and only if 
it satisfies the condition 

for all (q, U )  E T ( M ) .  

The final introductory point concerns notation. I shall use ix to denote the interior 
product of a form by the vector field X, so that for example if R is a two-form, ixR 
is the one-form defined by 

. r r*r(q ,u)  = U 

( i x R ) ( Y )  = R(X,  Y ) .  

I shall have to deal on several occasions with a somewhat similar construction involving 
a two-form and a type (1, 1) tensor field. If T is a type (1, 1) tensor field and R a 
two-form then 

(X ,  Y ) - R . ( T ( X ) ,  Y )  

defines a type (0,2) tensor field, not necessarily skew-symmetric (it would be described 
in tensor calculus as the tensor obtained from T by using R to lower the contravariant 
index). I shall denote this type (0,2) tensor field by T JR. It is easy to show that for 
any vector field X ,  

Lx (T  J a) = (LxT)  J R + T _I LxR.  
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The principal concern of this memoir is to derive and exploit the properties of the 
tensor field S,  of type (1, l), whose action as a linear map of a tangent space to T ( M )  
is the composition of projection and vertical lift: if U E T(q ,u l (T(M))  then 

S ( q , u L U )  = (.rr*u)L.u,. 

S(X') = X' 

In terms of complete and vertical lifts, 

S(X") = 0. 

The tensor field S is the vertical lift of the identity tensor field (Kronecker 6 )  on M 
to T ( M ) ,  in the sense of Yano and Ishihara (1973, p 34). 

I next give some of the purely geometric properties of S.  Evidently S2 = S 0 S = 0. 
The necessary and sufficient condition for a vector field W on T ( M )  to be vertical 
is that S (  W )  = 0, and for it to be projectable is that S (  W) is a vertical lift. The Lie 
derivatives of S by vertical and complete lifts may be computed by using the formula 

(LW,S)(WZ) = [Wl, S(W2)l-S([W,, W21). 

Thus (for X1, X2 vector fields on M )  

(Lx;S)(X', 1 = [x;, x; I-S([X,, X21') = 0 

(Lx;S)(Xf 1 = [Xl, x,l '-s~[xl,  X21') = 0 

(Lxrs)(x; 1 = 0 

(LXy;S)(Xi) = -S([X,, X,]') = 0. 

Therefore, the Lie derivative of S by either a vertical or a complete lift vanishes. It 
is easy to show by the same method that 

LAS = -s. 
Next, I show that the Nijenhuis tensor of S is zero. The Nijenhuis tensor NT of 

a type (1, 1) tensor field T is the type ( 1 , 2 )  tensor field defined by 

NT(x1, x 2 )  = [T(Xl), T(xZ)l+ T2([xl, x 2 1 )  - T([T(Xl), x21) - T([Xl, T(x2)l) 

where X1 and X2 are any two vector fields. In the case of interest, since S2 = 0, for 
any vector fields W1, W 2  on T ( M ) ,  

Ns ( w1, W2) = [ S (  Wl), s ( W2)l - s (1s ( Wl), W2l) - s ([ w1, s ( W2,l). 

Moreover, since NS is evidently skew-symmetric, it is enough to show that Ns vanishes 
when its arguments are respectively a pair of complete lifts; a vertical lift and a 
complete lift; a pair of vertical lifts. But 

Ns(XT,X',, =[X;,X;]-S([X;,XC2I)--S([XT,X;l) 
= -S([X1, X21V)+~([X1, X21') = 0 

Ns(x;, X',) = -S([XY, x;]) = 0 Ns(XY, X i )  = 0 
for any vector fields XI, Xz on M. 

A type (1, 1) tensor may be applied to one-forms as well as to vector fields; if 
one-forms are regarded as maps of vector fields to functions, the action of a type 
(1, 1) tensor is simply composition. If 8 is a one-form on T ( M )  then 8 0 S vanishes 
on vertical vector fields. 

From a two-form U one may construct two type (0,2) tensor fields using S :  the 
field S J w mentioned earlier, and the field ( W1, W,)++w(S( WI),  S (  W2)). In the case 
of an exact two-form w = de, these three constructions are related as follows: for any 
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vector fields W1, Wz on T ( M ) ,  

d8(S(W1), S (  W2))=d(8 oS)(S(WI) ,  W ) + d ( @  o S ) ( W I ,  S(W2));  

that is, d8(S( . ) , S (  a ) )  is, but for a constant factor, the skew-symmetric part of 
S J d ( 8  OS). In fact 

d(e 0 s ) ( s ( w l ) ,  wz) = s~wl)(e(s(w2))) - w [ s ( w l ) ,  wzi)) 
d(e oS)(Wi, S(Wz)) = -s(wz)(e(s(wi)))-e(s([wi, S(W2)I)) 

and so, as a consequence of the vanishing of the Nijenhuis tensor of S,  

4 8  oS)(S(Wi), W2)+d(e oS)(Wi, S(Wz))  

= ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ 2 ~ ~ ~ - ~ ~ ~ 2 ~ ~ e ~ ~ ~ ~ 1 ~ ~ ~ - ~ ~ ~ ~ ~ ~ 1 ~ , ~ ~ ~ 2 ~ i ~  
=dB(S(Wi), S(Wz)) 

as required. In particular, if 8 is closed then S J d(B O S )  is symmetric, which may 
equivalently be stated in the form 

is(wlw + (iw) 0 S = 0 (w = d(8 0 S ) )  

for any vector field W. 
I now turn to some results relating S and the properties of second-order differential 

equation fields. A vector field r on T ( M )  is a second-order differential equation field 
if and only if 

s(r) = A .  

It follows that for any second-order differential equation field r and any vector field 
X on M, [X', r ]  is vertical and [X', r] projects onto X :  for 

The key result concerns the Lie derivative LrS of S by any second-order differential 
equation field: this tensor field satisfies 

(LrS)'=I 

where I is the identity type (1, 1) tensor field on T ( M ) .  This I now prove. Firstly, 
for any vector field X on M, 

(LrS)(X') = -S([T, X'])  = X ' .  

It follows that LrS acts as the identity on all vertical vector fields; and evidently so 
does (LrS)'. On the other hand, 

(LrS)(X') = [r, x'] -S([r, X'])  = [r, x'] 
since [r, X'] is vertical. Now [r, X'] projects on -X  while X' projects on X ,  and so 
(LrS)(Xc)  +X' is vertical. Thus 

(LrS)( (Lrs) (X' )  +x')  = ( L r S ) ( k c )  +x' 

from which it follows that 

(L  rS )2(X')  = X' 

and the proof is complete. 
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The tensor fields P and Q on T ( M )  given by 

P = i ( I - L r S )  Q = $ ( I + L r S )  

are therefore projection operators: 

such that 

Two distributions on T ( M )  are defined by P and Q:  ker P, the set of vector fields on 
which P vanishes, which is equivalently defined as im Q, the set of vector fields of 
the form Q( . ); and ker Q, or equivalently im P. These distributions could also be 
defined as those on which LrS acts as the identity, and minus the identity, respectively. 
At each point of T ( M )  the tangent space is the direct sum of complementary subspaces 
defined by the two distributions. Since LrS  acts as the identity on vertical vector 
fields, k e r P  contains all vertical vector fields. On the other hand, if W ~ k e r P  
then (LrS) (  W) = W, and therefore S (  W) = S ( ( L r S ) (  W)); but S 2  = 0, and therefore 
S 0 LrS = -LrS 0 S ;  thus S (  W) = - ( L r S ) ( S (  W)) = - S (  W) since S (  W )  is vertical; 
consequently S (  W) = 0, and W is vertical. Thus ker P consists precisely of the vertical 
distribution. It follows that ker Q (im P) is a distribution of the same dimension as 
the vertical distribution (namely dim(M)), which, since it is complementary to the 
vertical distribution, will be called horizontal. Moreover, for any vector field X and 
smooth function f on M, the vector field (fX)' differs from ( r* f )XC by a vertical 
vector field, and therefore P((fX)') = ( r*f )P(XC);  it follows that every vector field X 
on M has a horizontal lift Xh to T ( M )  defined by Xh = P(X'), the map from vector 
fields on M to horizontal vector fields on T ( M )  so defined being linear over the ring 
of smooth functions on M. Consequently, the value Xpq,ul of the horizontal lift of X 
at (4, U ) E  T ( M )  depends only on the value X, of X at q (and not on its values at 
other points of M ) ,  and the map is the value at 
(4, U )  of the horizontal lift of any vector field on M whose value at q is 6, is a linear 
one. This linear map is in fact an isomorphism of T,(M) with the horizontal subspace 
of T(q,u)( T ( M ) ) ,  whose inverse is simply the projection restricted to the horizontal 
subspace. 

An explicit formula for X h ,  in terms of the particular second-order differential 
equation field r under discussion, is given by 

P2=P  Q ~ = Q  

P o  Q = Q 0 P = O .  

where [ E T,(M) and 

xh = P(x') = $(x' - (LrS)(X')) = &x' + [x', r]). 
This construction generalises the horizontal distribution of a symmetric linear connec- 
tion on M, to which it reduces when is the 'spray' determined by the connection, 
that is, its geodesic field. The explicit formula for a horizontal lift has been given 
before (Crampin 1971, 1981; see also Yano and Ishihara 1973, ch VI), and the 
extension of some ideas of connection theory to horizontal distributions in general is 
the subject of a further paper by the present author (Crampin 1983a). 

3. Lagrangian theory 

From any function L on T ( M )  (a Lagrangian function) one may construct a two-form 
" by 

0 =d(dLoS) .  
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The Lagrangian L is said to be regular if the two-form w has maximal rank, that is, if 

iww = O  implies that W = 0. 

Since w = d(8 0 S) and the one-form 8 = dL is certainly closed, it follows from the 
vanishing of the Nijenhuis tensor of S that for every pair of vector fields W I ,  WZ on 
T ( M )  

O(S(Wl),  wz)+w(w1,s (wz) )=o;  

in  other words, the type (0,2) tensor field S Jw is symmetric. Thus for any vector 
field W, 

iscw,w = - ( i w w )  0 S. 

The two-form w is given explicitly by 

w(W1, WZ) = wl(:/(wz)(L>)- Wz(S(W1)(L))-S([W1, WZNL), 

for any vector fields W 1 ,  WZ on T ( M ) .  When A is taken for W1,  one finds that 

W =  A(S(W)(L))-S([A,  Wl) (L)  

=S(W)(A(L))+([A,  S (w) l -S ( [A ,  Wl) ) (L)  

=S(W)(A(L) ) -S (W)(L)  

= S ( W ) ( E )  

= S(w) (A(L) )  -k ((LAS)(W))(L) 

where E = A(L) - L is the energy function associated with L. Thus 

iaw = dE 0 s. 
If r is a second-order differential equation field, then 

(irw) 0 S = - i s ( r p  = - dE 0 S 

so that irw + d E  vanishes on vertical vector fields. Conversely, if W is any vector 
field such that iww + d E  vanishes on vertical vector fields then 

( iww + d E ) o S  = 0 = - I S ( W F  ' + i ~ w  

whence S( W )  = A (assuming that L is regular) and W is a second-order differential 
equation field. 

There is a unique field A such that 

iAw = -dE 
and by the argument above it is a second-order differential equation field. It is the 
Euler-Lagrange field for L,  since the second-order differential equations satisfied by 
its integral curves are the Euler-Lagrange equations for L. 

The explicit equation for w gives, when one of the arguments is an arbitrary 
second-order differential equation field r, 

w ( r ,  w )  = r ( s ( w ) ( L ) ) -  w w ) ) - s ( [ r ,  W I X L )  

W L ) =  - ( i w  +dE)(w)+T(S(w)(L))+s([w, r l ) ( ~ ) .  
which may be rearranged into the form 
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Suppose, now, that S([W, r])  = 0, in other words, that LwT is vertical. Then W 
generates a one-parameter group {q51} such that for every t ,  q5J differs from r by a 
vector field which is, at least to first order in t ,  vertical; and so 4fJ is (again to first 
order in t )  a second-order differential equation field. Since time, in the present case, 
is represented by the parameter on the integral curves of the vector field representing 
the dynamics, may be regarded as a ‘variation by which we pass from a point of 
(the original curve) to a point of (the transformed curve) which is correlated to the 
same value of the time’ (Whittaker 1904). A vector field W such that S([W, r]) = 0 
will therefore be called a variation of the second-order differential equation field r. 

A complete lift is a variation field of any second-order differential field; in fact, 
for any second-order differential equation field r and any vector field X on M there 
is a unique variation field W of r such that S (  W) = X ’ ,  namely W = X‘. More general 
variation fields are possible, though no longer universally: as I shall now show, given 
any vertical vector field V there is a unique variation field V r  of such that S (  V r )  = V ;  
as the notation indicates, the variation field depends on r. The proof proceeds by 
showing that the map W - S ( W )  of variation fields of r, which is linear over R, is 
bijective. If W is a variation of r such that S (  W) = 0, so that W is vertical, then 

W = ( L r S ) (  W) = [r, S (  W)]-S([r, W]) = 0. 

The map is thus injective. On the other hand, if V is a vertical vector field, set 
V r  = (LrS)([r, VI);  then 

S ( V r )  = ( S  o L r S ) ( [ r ,  V I )  = - ( L r S ) ( S ( [ r ,  V I ) )  = ( L ~ s ) ~ ( v )  = v 

S ( [ v r ,  r i ) = ( L r s ) ( v r ) - ~ r ,  v I = ( ~ r s ) * ( [ r ,  vi)-[r, vI=o. 
and 

Thus Vr is a variation of r such that S (  V r )  = V, and the map is also surjective. 

vector field V, 
It follows that for any second-order differential equation field r and for any vertical 

Vr(L)  = - (iw + d E ) (  Vr)  + r( V ( L ) ) .  

This is a global version of the variational equation of Lagrangian dynamics. By 
specialising it to any integral curve of r, integrating along an interval of the curve, 
and applying the usual arguments of the calculus of variations (as set out for example 
in Gelfand and Fomin (1963)), one obtains the Euler-Lagrange equations in the form 
noted above, i,,u = -dE. It follows from the Euler-Lagrange equations in this form 
that 

L A W  = 0. 

I now return to the fact that S JW is symmetric and describe some of its con- 
sequences. Since 

L,(S Jw)  = (L,S)  JW 

and since the Lie derivative of a symmetric tensor is symmetric, ( L A S ) ~ w  is also 
symmetric. It follows that for any pair of vector fields W1, W2, 

0 (P(Wl),  W2) +W(WI, P(W2)) = W(W1, W2) 

(Q(wi), W2) + w (Wi,  Q(W2)) = w ( Wi, W2) 

W(P(Wl), W2)-0(W1, Q(W,))=O. 
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As a consequence of the first two of these relations one finds that w vanishes when 
both its arguments are horizontal, and when both its arguments are vertical; that is 
to say, the horizontal and vertical subspaces of the tangent space at each point of 
T ( M )  are both Lagrangian for w .  

The simple argument used above to derive the symmetry of (LAS) J w  from that 
of S Jw applies quite generally to show that if, for any tensor T, T J w  is symmetric, 
then (LAT)  Jw is also symmetric. Furthermore, if T Jw is symmetric then so are 
(P  0 T 0 Q )  Jw and (0 0 T oP) J w ;  for (to deal only with the first case, the second 
being essentially the same), 

(P  (T  (Q ( Wi))), Wz) = ( T (Q ( WI 11, Q ( Wz)) 

=-w(Q(Wi) ,  T ( Q ( W ~ ) ) ) = - W ( W ~ , P ( T ( Q ( W ~ ) ) ) )  

as required. The generation of s5,mmetric tensors by combining the two processes of 
taking the Lie derivative and cornposing with P and Q lies at the basis of the derivation 
of a sequence of algebraic necessary conditions for the existence of a Lagrangian 
(Henneaux 1982, Sarlet 1982), a point to which I return in D 5 .  

Finally, since LAS is non-singular, the symmetric tensor ( L A S )  J w  defines a metric 
on T ( M ) .  It generalises the so-called complete lift to T ( M )  of a metric on M,  to 
which it reduces when L is the kinetic energy Lagrangian for such a metric and A is 
therefore the geodesic spray of the corresponding Levi-Civita connection. The metric 
(LAS)  Jw is pseudo-Riemannian, with dim(M) positive and dim(M) negative signs in 
its signature, the vertical and horizontal subspaces at each point being null. (It should 
be noted that there is more than one way of associating a metric with w ,  and this one 
differs from that given in Crampin (1981).) 

4. The inverse problem of Lagrangian dynamics 

Given a second-order differential equation field on the tangent bundle of a differenti- 
able manifold, one may ask: under what conditions is it the Euler-Lagrange field for 
some Lagrangian function (to be determined)? Conditions for the existence of a 
'multiplier' for a system of second-order differential equations 4" = fa(q, q ) ,  that is 
to say, a matrix ( a a b )  of functions of q, 4 such that the equations a&' +pa = 0 (where 
pa = -aabfb) are equivalent to the original ones and of the Euler-Lagrange form, have 
been known for a long time, usually being attributed to Helmholtz (see e.g. Santilli 
1978). The Helmholtz conditions provide only a partial solution to the problem, since 
they are conditions to be satisfied by the multiplier (a,b), whereas ideally one would 
look for conditions which could be stated in terms of the functions fa alone. However, 
the analysis of the two-dimensional case by Douglas (1941) gives a clear indication 
that this ideal is not likely to be attained in a general way. Recent investigations of 
the problem have achieved improvements over the Helmholtz conditions in their 
original form, by replacing some of the differential conditions on the multiplier matrix 
by algebraic conditions involving, essentially, higher and higher derivatives of the 
functions fa. In  particular, Henneaux (1982), using a Lie derivative based approach, 
gave a sequence of algebraic necessary conditions and Sarlet (1982), by purely analytic 
methods, obtained a set of necessary and sufficient conditions which also include a 
sequence of algebraic conditions. I wish to show how, by adapting Henneaux's 
methods, one may obtain Sarlet's conditions, at least in the time-independent case. 
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As I suggested above, once again the tensor field S and its Lie derivatives will play 
a key role. 

I have shown elsewhere (Crampin 1981) that the Helmholtz conditions may be 
equivalently expressed in geometrical language as follows: necessary and sufficient 
conditions for a second-order differential equation field r to be derivable from a 
regular Lagrangian function are the existence of a two-form w ,  of maximal rank, for 
which L w  = 0, and such that all vertical subspaces are Lagrangian both for w and 
for iHdw where H is any horizontal vector field (horizontal, that is, with respect to 
the horizontal distribution determined by r). It follows, of course, from these assump- 
tions about w that S J w  is symmetric: this may be shown as follows. It is certainly 
true that 

W ( S ( W I ) ,  wz)+~(wl ,~ (wz) )=o  
when WI and WZ are both vertical; and when W1 (say) is horizontal and Wz vertical 
it is a consequence of the assumption that vertical subspaces are Lagrangian. Since 
L w  = 0, for any vector fields XI, Xz on M, 

the horizontal component of [r, X'], which is the only one that matters, is -Xh, whence 

w ( x : ,  x; ) + w ( x ; ,  x: 1 = 0 = W ( x : ,  s(x:))+W(s(x: 1, x:), 
which completes the proof. 

It now follows that tensor fields derived from S by repeated Lie differentiation 
with respect to r and by composition with P and Q, in the manner given earlier, have 
the same symmetry property with respect to w as does S itself. To be explicit, the 
sequence of type (1,l) tensor fields dk),  k = 0,  1 , 2 , .  . . defined by 

@ ( & + I )  - - Q 0 L&"' 0 P @CO) = - L zQ oLr(LrS) 0 P 

is such that @(k) Jo is symmetric for every k. The tensor field @('I is of course defined 
in terms of the intrinsic geometry of the tangent bundle and of the particular second- 
order differential equation field r, and is not dependent on the existence of a multiplier. 
The symmetry conditions are therefore algebraic conditions on U ,  whose coefficients 
are simply related to the multiplier. These conditions are essentially equivalent to 
the algebraic conditions given by Sarlet, making allowance for the fact that he was 
dealing with the time-dependent case, as will be shown in $ 7  by exhibiting the 
coordinate expressions for the @ ( k ) ;  the coefficients and the numbering of the @ ( k )  

have been chosen to agree with his. Of course, one could define sequences of symmetric 
tensors based on S in other ways; the significance of the chosen one is that composition 
with Q and P picks out the component containing the highest derivative at each stage. 
In other words, though Li-dk) J w  is certainly symmetric, the terms in L , d k )  which 
are not in Q 0 Lr@(k) 0 P turn out to satisfy the symmetry condition automatically 
since they depend on the @ ( I )  with 1 G k, whose symmetry is already established. 

Sarlet, in fact, went further and showed in effect that the following conditions are 
necessary and sufficient for the existence of a Lagrangian function for the second-order 
differential equation field r: the existence of a two-form w of maximal rank such that 
S Jw, (LrS)  J w  and 0"' Jw, k = 0, 1,2, . . . are all symmetric, and that S J(iHdw) is 
symmetric for every horizontal vector field H. Thus he was able to trade off the 
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assumption that L w  = 0 against the sequence of algebraic conditions and the weaken- 
ing of the conditions on the exterior derivative. This is an ingenious and somewhat 
unexpected achievement. 

5. Alternative Lagrangians 

When there are two Lagrangian functions for the same second-order differential 
equation field r which are not just related by the trivial operations of multiplication 
by a constant and addition of a total time derivative, then the corresponding two-forms 
w and G both satisfy the geometrical version of the Helmholtz conditions quoted 
above; and conversely, two distinct two-forms, not differing by a constant factor, both 
satisfying the conditions define alternative not trivially equivalent Lagrangians for r. 
In these circumstances it follows from the fact that w and G are of maximal rank 
that there is a non-singular type (1, 1) tensor field R such that 

6 = R  Jw.  

The tensor field R must satisfy a number of algebraic and differential conditions 
arising from those assumed for w and G, as follows. Firstly, if T is any type (1, 1) 
tensor field such that T J w  and T J G  are symmetric, then R commutes with T and 
(R  0 T )  J w  is also symmetric. For 

G(T(Wi),  Wz) =G(T(Wz),  Wi) = -G(Wi, T(Wz))  
for any vector fields W1, Wz, from which it follows that 

(R (T( WiIL Wz) = - 0 (R (Wi), T (  Wz)) = ( T ( R  ( Wi)), Wz) 
so that R 0 T = T 0 R. Furthermore, by the skew-symmetry of G, 

0 ( R  ( T (  Wi I) ,  Wz) = - ( R  ( Wz), T (  Wi)) = ( T ( R  ( Wz)), Wi) 
whence ( R  0 T )  J w  is symmetric. In particular R commutes with LrS, and therefore 
with the projection operators P and 0; it therefore preserves the direct sum decompo- 
sition of tangent spaces into horizontal and vertical subspaces, mapping horizontal to 
horizontal vectors and vertical to vertical. Moreover, from the fact that R commutes 
with S it follows that for any vector field X on M, 

S(R (Xh)) = R ( X ” ) ,  

so that R acts essentially identically on horizontal and on vertical lifts. To be precise, 
if {X1,Xz,. . . , X m }  is a local basis of vector fields on M,  with horizontal lifts 
{H1 ,  H z ,  . . . , H,} and vertical lifts {Vl, Vz, . . . , V,}, then with respect to the local 
basis {Hi, H z ,  . . . , H,, V1, VZ, . . . , V,} of vector fields on T ( M ) ,  R is represented 
by a 2m x 2m matrix with identical m x in blocks on the diagonal and zeros elsewhere. 

More generally, R must commute with @(k), k = 0, 1 ,2 ,  . . . . This gives a sequence 
of necessary algebraic conditions that R must satisfy, which are useful in the investiga- 
tion of the existence of alternative Lagrangians for a dynamical system for which one 
Lagrangian is already known, a technique exploited by Henneaux and Shepley (1982). 

From the assumption that L w  = Lrij = 0 it follows that LrR = 0, and that con- 
sequently LrR k = 0 for every power R k of R. Moreover, since Lie differentiation 
commutes with contraction, it follows that the trace of R and of each of its powers 
is a constant of the motion, the result of Hojman and Harleston (1981). This is a 
particular case of a general geometrical construction for finding constants of the motion 
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(Crampin 1983b). A related proof of the Hojman-Harleston result, which does not 
however use the technique of vertical and horizontal decomposition, has been given 
by Henneaux (1981). It may be shown, using the analysis presented above, and recent 
results of de Filippo et a1 (1983), that if a dynamical system admits alternative 
Lagrangians, and the tensor field R has vanishing Nijenhuis tensor, then the system 
is completely integrable (Crampin et a1 1983). 

Finally, from the closure condition for w and G it follows that the vertical Lie 
derivatives of R satisfy 

w ( ( L y v R ) ( X h ) , Z v ) = ~ ( ( L z v R ) ( X h ) ,  Y') 

for all vector fields X ,  Y , Z  on M. This is a version of the symmetry condition on 
vertical derivatives of the 'Hessian matrix' given by Henneaux and Shepley. 

6. Symmetries 

In discussing symmetries of an Euler-Lagrange field, or more generally of a second- 
order differential equation field, I shall follow the classification of Prince (1983), 
making the necessary allowances for the fact that he deals with the time-dependent 
case. 

A Lie symmetry of a second-order differential equation field r on T ( M )  is a vector 
field X on M such that [X', r] = 0. (A direct transliteration of Prince's definition of 
a Lie symmetry would apparently allow [X', r] to be a multiple of r, but since [X', r] 
is vertical the factor must be zero.) Thus the one-parameter group of transformations 
of T ( M )  generated by X' permutes the integral curves of r. In the case of an 
Euler-Lagrange field A, a vector field X on M such that LXc(dL  0 S )  is exact and 
X'(E)  is zero is a Lie symmetry of A, since 

i[xc,,\]w = -Lxc(dE) -i.\(Lxcw) = 0; 

such a symmetry is called a Noether symmetry. Noether symmetries give rise to 
constants of the motion. This can be seen in two ways. Firstly, using the variational 
equation, and the fact that X' is the variation field corresponding to the vertical vector 
field X' for any second-order differential equation field r, one finds that 

X'(L) = - ( i rw +dE)(X ' )  + T(X"(L)) .  

If now Lxc(dL 0 S )  = df then, since LxcS = 0, 

df = d(X'(L)) 0 S 
and therefore 

r(f) = A(x'(L)) =x' (A(L))  =x' (L)  

r ( f - X ' ' ( L ) )  = -(iw +dE)(X')  

since [ A ,  X'] = 0 and X'(E)  = 0. The variational equation now reads 

and when = A, the Euler-Lagrange field, one obtains 

A ( f - X ' ( L ) )  = 0 .  

This derivation is a version of Noether's theorem. The key step is that r(f) =X' (L)  
for every second-order differential equation field r. The second approach, which 
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could be called the Cartan approach, is more direct. From the condition L d d L  0 S )  = 
df one finds that 

i xw + d(ixc(dL0 S ) )  = ipo + d(X'(L))  = df 

and therefore 

A(f-X' (L. ) )  = (ixco)(A) = - ( i ~ o ) ( X ' )  = X ' ( E )  = 0. 

I give these alternatives because they are instructive models for the more general 
type of symmetry which is not simply generated by a vector field on the base manifold 
M. A dynamical symmetry of a second-order differential equation field r is a vector 
field W on T ( M )  such that [ W ,  r]  = 0. A Cartan symmetry of an Euler-Lagrange 
field A is a vector field W on T ( M j  such that Lw(dL 0 S )  is exact and W ( E )  = 0. A 
Cartan symmetry is a special case of a dynamical symmetry of A as before. Moreover, 
the Cartan argument above applies with little alteration to show that if Lw(dL 0 S) = df 
then f-S( W ) ( L )  is a constant of the motion: 

iw + d(S( W ) ( L ) )  = df A(f - S (  W ) ( L ) )  = - (iAo)(W) = W ( E )  = 0.  

The oddity of the Noether argument in this case is that the variation field Wr which 
is required in the variational equation, namely the variation field of r such that 
S (  Wr) = S (  W ) ,  will vary with r; only when r = A will Wr = W. Though the Noether 
argument does follow through, the Cartan argument is clearly the more straight- 
forward. 

Lie (Noether) symmetries may be characterised as those dynamical (Cartan) sym- 
metries for which W is projectable. In fact if [W,  r]=O and S ( W ) - X ' ,  then 
(LrS)(  W j  = [r, X'] ,  and so W = (LrS)([T, X']) .  This may be easily computed if 
[ r , X ' ]  is written as the sum of its vertical and horizontal parts, which are X C - X h  
and -Xh.  Thus 

( L , s ) ( [ ~ ,  x']) = ( L r S ) ( ( X ' - X h )  - X h )  = (x' -xh) + x h  =x' 
and so W = X' as required. 

Consideration of the special case of a geodesic spray is usually instructive regarding 
Lagrangian theory in general, and this is certainly true so far as symmetries are con- 
cerned. A Lie symmetry of the spray of a symmetric connection is a vector field which 
generates affine transformations of the base manifold M (on which the connection is 
defined). If the connection is metric, the spray is the Euler-Lagrange field of the 
kinetic energy function and the Noether symmetries are the isometries of the metric. 
Thus for example in R = M the straight line geodesics have for Lie symmetries the 
infinitesimal generators of arbitrary affine transformations; the Euclidean metric 
provides a Lagrangian, the corresponding Noether symmetries being the infinitesimal 
generators of orthogonal transformations. But the Euclidean metric is not the only 
possibility for a Lagrangian: certainly, any non-singular symmetric constant bilinear 
form will do; it is significant that any such form may be generated by applying a 
non-orthogonal affine transformation to the Euclidean metric, 

In  the case of a Lie symmetry X of a second-order differential equation field r, 
it follows from the conditions LX& = 0 and [X',  r] = 0 that Lxc(LrS) = 0, and therefore 
the transformations of the one-parameter group generated by X' preserve the direct 
sum decomposition of tangent spaces into horizontal and vertical subspaces. The 
horizontal subspaces for a geodesic spray are just those determined by the corre- 
sponding symmetric connection, which are preserved by the complete lifts of affine 
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transformations and by those alone. Thus Lie symmetries generalise affine transforma- 
tions. In the case of an Euler-Lagrange field A, if X is a Noether transformation 
then Lxcw = 0; it follows that X' is an isometry of the metric (L,,S)Jw. It is known 
(Yano and Ishihara 1973, p. 145) that for a (pseudo)-Riemannian manifold M, the 
complete lift of a vector field X on M generates isometries of the complete lift of 
the metric to T ( M )  if and only if X generates isometries of M. Since the complete 
lift of the metric to T ( M )  is just (L,,S)Jw, it is clear that Noether symmetries generalise 
isometries. 

Consider, furthermore, a non-Noether Lie symmetry of an Euler-Lagrange field 
A, whose complete lift generates therefore a one-parameter group {df} of transforma- 
tions of T ( M )  which leave the vector field A invariant. The two-form q5Tw is therefore 
distinct from w ,  and is easily seen to satisfy all the conditions required for it to come 
from a Lagrangian for A (partly because, being a complete lift, df leaves S invariant). 
(Prince, on whose paper (Prince 1983) these remarks are based, works with the Lie 
derivative rather than the pull-back of w ; it is not clear that the Lie derivative will 
have maximal rank, though it will satisfy the other conditions, so it seems preferable 
to use the pull-back.) In fact, if w =d(dL O S )  then q5;w =d(q5T(dL O S ) )  = 
d(d(q5:L) 0 S ) ,  and so q5:L is an alternative Lagrangian function for A, distinct from 
L (though possibly just a constant multiple of it). This construction generalises the 
use of a non-orthogonal affine transformation to generate an alternative Lagrangian 
for the straight line geodesic spray. 

It will be apparent that the same conclusion will not hold in general for a non-Cartan 
dynamical symmetry, since it will not necessarily be the case that the transformations 
it generates will preserve the decomposition into horizontal and vertical subspaces. 
If W is a non-Cartan dynamical symmetry of the Euler-Lagrange field A, and {q5f} 
the one-parameter group of transformations of T ( M )  it generates, then q5Fw will 
satisfy all the conditions necessary for it to be derivable from a Lagrangian except 
those relating to the special properties of vertical subspaces. Now w will be closed, 
and so q5;w will also be closed; the additional restriction to be put on W is that 
S J 4 T w  is symmetric, which entails that (LwS) J w  should be symmetric, which is the 
condition found by Prince. 

7. Formulae 

Take coordinates q" on M,  and correspondingly q", U "  on T ( M )  (a  = 1,2 , .  . . , 
m = dim(M), with range and sum conventions in force). If X = ("a/aq" is a vector 
field on M then 

The dilation field A is given by 
A = u"a/au" 

s = (a/au")Odq". 

and the type (1, 1) tensor field S by 

A second-order differential equation field r takes the form 

T=u"a/aqa +faa/au" f" =fah U). 

4" = U "  U" =f"(q, 4 )  or 4'" = f a ( %  4 ) .  
Its integral curves are the solutions of 
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For any second-order differential equation field I?, 

where I have followed Sarlet (1982) in putting Ab, = - iafb/au ". Thus 

P =  (2 a - A b , T ) @ d q "  a Q = (l@(A:dqb a +du") .  
au  au 

The vector fields Ha = 8/84" -Ata/aub form a basis for the horizontal subspace at 
each point (and of course the vector fields V, = a/au" form a basis for the vertical 
subspace at each point). The basis of one-forms dual to the basis {Ha, V,} is {dq", e"} 
where 0" =A:dqb +du". Rewriting LrS, P and Q in terms of these bases one finds 

LrS  = -Ha Odq"  + V, 0 8" P = H a  Odq"  Q = V,Ot?". 

The Lie derivatives of these basis vector fields and forms with respect to r, expressed 
in terms of the basis fields themselves, are 

[r,H,]=A%b+@:Vb [r, v,]=-H,+A:Vb 

L r d q "  =-A';:dq b a  +8  Lr8" = -@';:dqb -A$Ob 

where (again following Sarlet) 

@: =Bf: -A:A,b - T(A:) and B: = -afb/aqa. 

The two-form d(dL 0 S ) ,  when expressed in terms of the one-form basis {dq", 8") 
appropriate to its Euler-Lagrange field, takes the form 

d(dL 0 s) = f fab  dq" A O b  ff,b = - a2L/au "au '. 
Conversely, any two-form w such that, for a given second-order differential equation 
field I', S J w  and (LrS) J w  are symmetric, necessarily takes the form 

0 = ( Y o b  dq"A 8' 

The Helmholtz conditions arise as follows: 

where f f a b  = ab". 

(Lrw)(Ha,Hb)=o ff ac @ 'b = ff bc @: 

(Lm)(Ha,  v b ) = o  

( L p ) ( v a ,  vb )=o  

r ( f f , b  ) = aacA 'b + 
(identity, in virtue of symmetry of a ,b )  

( iH,  dw)(Vb, V,) = 0 aaab/aUc = aaaC/au b . 

The further condition on dw which arises if one assumes that S J ~ H  dw is symmetric is 

H b  (ffac)  + f f b d  va (A?) = Hc ( f f a b )  + f f c d v o  (A 2) 
which may be written (cf Sarlet 1982, theorem 5 )  
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If w = (Yab dq" A 8' then T J w  is symmetric if and only if 

a , c K i  f a b c v ' ,  = o  aucA i = CYbcA: a u c p i  = a b & :  

or in the obvious matrix notation (with T meaning transpose) 
T 

(YK + = 0 ah = w =(w) * 

Pre- and post-multiplication by P or Q picks out the various components of T ;  in 
particular 

Q 0 T 0 P = p V, 0 dq b~ 

The Lie derivatives of the basis tensor fields are 
b L r tH, O dq 1 = (A  ', 6 : - 6: A :)Hc 8 dq + Ha 0 8 @ V, 0 dq 

b Lr(H, 0 8 ) = - @:Ha Odq + (A',S: - S',A;)H, 0 O d  + S', V, 0 e6 
Lr (V ,Odqb)=-H,Odqb  + l A ' , 6 ~ - 6 ~ A : ) V , 0 d q d  + VaOOb 

Lr(  Va $3 8' ) = -Ha 0 0 - @: V, 0 dq' + ( A i  Sf; - 6:Af;) V, 0 B d .  

In particular 

Lr(LrS)= - 2 H a 0 8 "  -2@;VaOdqb 

= -:a 0 Lr(LrS) 0 P then 

@ " O '  = @gV, @dqb. 

and so if 

The @ ( k )  are defined inductively; setting 
(GI - ( k )  @ - @tVaOdqb  

one finds that 

LrQik'=  (r('k)@t)+Aar(k'@,cb-'k'@acACb)VaOdqb - ik)@t(H,@dqb - v,@8b), 

Defining matrices I k 1 @  inductively by 

' k c ' ' @  = r ( 'k '@) + [ A ,  ( k ) @ ]  fa'@ = @ 

(the bracket indicating the matrix commutator) one then has 
@ ( k + l )  - i k + l ) @ a  I 

- b C a Odqb  

and the symmetry of @ I k '  Jw amounts to 
cy ( k J @  = (a  (k)@)T 

(cf Sarlet 1982, theorem 7 ) .  

acts identically in each takes the form 
A type (1, 1) tensor field R which preserves horizontal and vertical subspaces and 

R =pba(Ha%dqb + V,8eb).  

Its Lie derivative is given by 

LrR = (Q:) +A>;  -p:A;)(H,  Odqb  + V,  0 19') + (@",pi  - p : @ i )  V,  @dq '. 
Thus necessary and sufficient conditions for LrR = 0 are 

U P )  + [A, P I  = 0 [("I@, p ]  = 0. 
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(Notice that by differentiating the last equation one obtains 

r((o'aqp+'o'@r(p) -r(p)(o'@-pr( 'ol@) = o 
whence 

r((o)@)p -'O)@[A, + [A, p ] ( c ) @  -pr((o)a) = o or pa, p] = 0, 

and so on.) 
The conditions for a vector field W = ["Ha + q" VQ to commute with r are 

q" = r ( t Q ) + A , " t b  r(qQ)+A:qb +@:tb = 0 

or in terms of 6" alone 

r * ( t " ) + 2 ~ ; : r ( [ ~ ) + ~ ; ~ ~  = 0. 

The further condition that ( L w S )  J w  should be symmetric is obtained as follows: 

But 

and therefore 

The symmetry conditions are therefore 

a Q , a t c / a u  = abcatc j a u  (I 

These are not, however, independent: the second is a consequence of the flrst and 
the Helmholtz condition r ( (Y ,b )  = aQ,A; +abcAi. The required condition is thus (cf 
Prince 1983, theorem 3) 

a Q c a Q c j a U b  = a b c a t c j a u a .  
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